vectơ (vec{u}) được gọi là vectơ chỉ phương của đường thẳng (∆) nếu (vec{u}) ≠ (vec{0}) và giá của (vec{u}) song song hoặc trùng với (∆)
Nhận xét :
- Nếu (vec{u}) là một vectơ chỉ phương của đường thẳng (∆) thì (kvec{u} ( k≠ 0)) cũng là một vectơ chỉ phương của (∆) , do đó một đường thẳng có vô số vectơ chỉ phương.
Bạn đang xem: Vecto chỉ phương là gì
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương của đường thẳng đó.
2. Phương trình tham số của đường thẳng
- Phương trình tham số của đường thẳng (∆) đi qua điểm (M_0(x_0 ;y_0)) và nhận vectơ (vec{u} = (u_1; u_2)) làm vectơ chỉ phương là :
(∆) : (left{begin{matrix} x= x_{0}+tu_{1}& \ y= y_{0}+tu_{2}& end{matrix}right.)
-Khi (u_1≠ 0) thì tỉ số (k= dfrac{u_{2}}{u_{1}}) được gọi là hệ số góc của đường thẳng.
Từ đây, ta có phương trình đường thẳng (∆) đi qua điểm (M_0(x_0 ;y_0)) và có hệ số góc k là:
(y – y_0 = k(x – x_0))
Chú ý: Ta đã biết hệ số góc (k = tan α) với góc (α) là góc của đường thẳng (∆) hợp với chiều dương của trục (Ox)
3. Vectơ pháp tuyến của đường thẳng
Định nghĩa: Vectơ (vec{n}) được gọi là vectơ pháp tuyến của đường thẳng (∆) nếu (vec{n}) ≠ (vec{0}) và (vec{n}) vuông góc với vectơ chỉ phương của (∆)
Nhận xét:
- Nếu (vec{n}) là một vectơ pháp tuyến của đường thẳng (∆) thì k(vec{n}) ((k ≠ 0)) cũng là một vectơ pháp tuyến của (∆), do đó một đường thẳng có vô số vec tơ pháp tuyến.
- Một đường thẳng được hoàn toàn xác định nếu biết một và một vectơ pháp tuyến của nó.
4. Phương trình tổng quát của đường thẳng
Định nghĩa: Phương trình (ax + by + c = 0) với (a) và (b) không đồng thời bằng (0), được gọi là phương trình tổng quát của đường thẳng.
Xem thêm: Hoa Hậu Jennifer Phạm Lên Chức Mẹ Lần Thứ 4
Trường hợp đặc biết:
+ Nếu (a = 0 => y = dfrac{-c}{b}; ∆ // Ox) hoặc trùng Ox (khi c=0)
+ Nếu (b = 0 => x = dfrac{-c}{a}; ∆ // Oy) hoặc trùng Oy (khi c=0)
+ Nếu (c = 0 => ax + by = 0 => ∆) đi qua gốc tọa độ
+ Nếu (∆) cắt (Ox) tại (A(a; 0)) và (Oy) tại (B (0; b)) thì ta có phương trình đoạn chắn của đường thẳng (∆) :
(dfrac{x}{a} + dfrac{y}{b} = 1)
5. Vị trí tương đối của hai đường thẳng
Xét hai đường thẳng ∆1 và ∆2
có phương trình tổng quát lần lượt là :
a1x+b1y + c1 = 0 và a2x+b2y +c2 = 0
Điểm (M_0(x_0 ;y_0))) là điểm chung của ∆1 và ∆2 khi và chỉ khi ((x_0 ;y_0)) là nghiệm của hệ hai phương trình:
(1) (left{begin{matrix} a_{1}x+b_{1}y +c_{1} = 0& \ a_{2}x+b_{2}y+c_{2}= 0& end{matrix}right.)
Ta có các trường hợp sau:
a) Hệ (1) có một nghiệm: ∆1 cắt ∆2
b) Hệ (1) vô nghiệm: ∆1 // ∆2
c) Hệ (1) có vô số nghiệm: ∆1 ( equiv )∆2
6.Góc giữa hai đường thẳng
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành 4 góc.
Nếu ∆1 không vuông góc với ∆2 thì góc nhọn trong số bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2.
Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2 bằng 900.
Trường hợp ∆1 và ∆2 song song hoặc trùng nhau thì ta quy ước góc giữa ∆1 và ∆2 bằng 00.
Như vậy góc giữa hai đường thẳng luôn bé hơn hoặc bằng 900
Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là (widehat{(Delta _{1},Delta _{2})})
Cho hai đường thẳng:
∆1: a1x+b1y + c1 = 0
∆2: a2x+b2y + c2 = 0
Đặt (varphi) = (widehat{(Delta _{1},Delta _{2})})
(cos varphi) = (dfrac{|a_{1}.a_{2}+b_{1}.b_{2}|}{sqrt{{a_{1}}^{2}+{b_{1}}^{2}}sqrt{{a_{2}}^{2}+{b_{2}}^{2}}})
Chú ý:
+ ({Delta _1} bot {Delta _2} Leftrightarrow {n_1} bot {n_2}) ( Leftrightarrow {a_1}.{a_2} + {b_1}.{b_2} = 0)
+ Nếu ({Delta _1}) và ({Delta _2}) có phương trình y = k1 x + m1 và y = k2 x + m2 thì
({Delta _1} bot {Delta _2} Leftrightarrow {k_1}.{k_2} = - 1)
7.Công thức tính khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng (Oxy) cho đường thẳng (∆) có phương trình (ax+by+c=0) và điểm (M_0(x_0 ;y_0))).
Khoảng cách từ điểm (M_0) đến đường thẳng (∆) kí hiệu là (d(M_0,∆)), được tính bởi công thức