Tổng hợp các dạng bài tập Đại số lớp 9

Or you want a quick look: Tổng hợp các dạng bài tập Đại số lớp 9

Các dạng Toán Đại số lớp 9 là tài liệu hữu ích, gồm 49 trang tuyển chọn kiến thức lý thuyết và các dạng bài tập Đại số 9.

Các dạng toán đại số 9 bao gồm lý thuyết và các dạng bài tập về: Căn bậc hai – căn bậc ba, liên hệ giữa phép khai phương và phép nhân, phép chia, biến đổi đơn giản biểu thức chứa căn thức bậc hai, rút gọn biểu thức chứa căn thức bậc hai. Sau đây là nội dung chi tiết, mời các bạn cùng tham khảo và tải tài liệu tại đây.

Tổng hợp các dạng bài tập Đại số lớp 9

Chương I. Căn bậc hai – Căn bậc ba

1. Căn bậc hai số học

– Căn bậc hai của một số không âm a là số x sao cho x= a

– Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là sqrt{a}

. Số âm ký hiệu là -sqrt{a}

– Số 0 có đúng một căn bậc hai là chính số 0, ta viết sqrt{0} = 0

– Với số dương a, số sqrt{a}

là căn bậc hai số học của a. Số 0 cũng là căn bậc hai số học của 0

Với hai số không âm a, b, ta có: a, b, ta có: a < b suy ra sqrt{a}

bé hơn sqrt{b}

2. Căn thức bậc hai

READ  Phiếu kê khai thông tin học sinh

Với A là một biểu thức đại số, ta gọi sqrt{a}

là căn thức bậc hai của A.

sqrt{a}

xác định (hay có nghĩa) khi A lấy giá trị không âm

cdot sqrt{A^{2}}=|A|=left{begin{array}{ll}A & n hat{e}^{prime} u A geq 0  -A & n hat{e}^{prime} u A<0end{array}right.

Dạng 1: Tìm điều kiện để sqrt{A} có nghĩa

cdot sqrt{A}

có nghĩa Leftrightarrow A geq 0

cdot sqrt{frac{1}{A}}

có nghĩa

frac{f(x)}{g(x)}

có nghĩa khi g(x) neq 0 cdot sqrt{frac{f(x)}{g(x)}} có nghĩa khi frac{f(x)}{g(x)} geq 0g(x) neq 0

Chú ý: Nếu bài yêu cầu tìm TXĐ thì sau khi tìm được điều kiện x, các em biểu diễn dưới dạng tập hợp

|f(x)| geq a

thì  f(x) geq a hoặc f(x) leq-a

Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a. sqrt{-3 x}

b.sqrt{4-2 x}

c) sqrt{-3 x+2}$ d) $sqrt{3 x+1}

d)sqrt{3 x+1}

e) sqrt{9 x-2}

f) sqrt{6 x-1}

Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:

a) frac{x}{x+2}+sqrt{x-2}

b) frac{x}{x^{2}-4}+sqrt{x-2}

c) sqrt{frac{1}{3-2 x}}

d) sqrt{frac{4}{2 x+3}}

Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:

a) sqrt{x^{2}+1}

b) sqrt{4 x^{2}+3}

c) sqrt{9 x^{2}-6 x+1}

d) sqrt{-x^{2}+2 x-1}

e) sqrt{-|x+5|}

f) sqrt{-2 x^{2}-1}

Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a) sqrt{4-x^{2}}

b)sqrt{x^{2}-16}

c) sqrt{x^{2}-3}

d) sqrt{x^{2}-2 x-3}

e) sqrt{x(x+2)}

f)sqrt{x^{2}-5 x+6}

Bài 5: Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a) sqrt{|x|-1}

b)sqrt{|x-1|-3}

c) sqrt{4-|x|}

d) sqrt{x-2 sqrt{x-1}}

e) frac{1}{sqrt{9-12 x+4 x^{2}}}

f)frac{1}{sqrt{x+2 sqrt{x-1}}}

Dạng 2: Tính giá trị biểu thức

Phương pháp: Các em dùng hằng đẳng thức 1 và 2 trong 7 hằngđẳng thức, biến đổi biểu thức
trong căn đưa về dạng sqrt{A^{2}}

rồi áp dụng công thức:

sqrt{A^{2}}=|A|=left{begin{array}{ll}A & text { nếu } A geq 0  -A & text { nếu } A<0end{array}right.

Bài 1. Thực hiện các phép tính sau:

a) -0,8 sqrt{(-0,125)^{2}}

b) sqrt{(-2)^{6}}

c) sqrt{(sqrt{3}-2)^{2}}

d) sqrt{(2 sqrt{2}-3)^{2}}

e) sqrt{left(frac{1}{sqrt{2}}-frac{1}{2}right)^{2}}

f) sqrt{(0,1-sqrt{0,1})^{2}}

Bài 2: Thực hiện các phép tính sau:

a) sqrt{(3-2 sqrt{2})^{2}}+sqrt{(3+2 sqrt{2})^{2}}

b) sqrt{(5-2 sqrt{6})^{2}}-sqrt{(5+2 sqrt{6})^{2}}

Bài 3. Thực hiện các phép tính sau:

a) sqrt{5+2 sqrt{6}}-sqrt{5-2 sqrt{6}}

b) sqrt{7-2 sqrt{10}}-sqrt{7+2 sqrt{10}}

= c) sqrt{4-2 sqrt{3}}+sqrt{4+2 sqrt{3}}

d) sqrt{24+8 sqrt{5}}+sqrt{9-4 sqrt{5}}

e) sqrt{17-12 sqrt{2}}+sqrt{9+4 sqrt{2}}

f) sqrt{6-4 sqrt{2}}+sqrt{22-12 sqrt{2}}

Bài 4. Thực hiện các phép tính sau:

a) sqrt{sqrt{5}-sqrt{3-sqrt{29-12 sqrt{5}}}}

b) sqrt{13+30 sqrt{2+sqrt{9+4 sqrt{2}}}}

c) (sqrt{3}-sqrt{2}) sqrt{5+2 sqrt{6}}

d) sqrt{5-sqrt{13+4 sqrt{3}}}+sqrt{3+sqrt{13+4 sqrt{3}}}

e) sqrt{1+sqrt{3+sqrt{13+4 sqrt{3}}}}+sqrt{1-sqrt{3-sqrt{13-4 sqrt{3}}}}

Dạng 3: So sánh căn bậc 2

Phương pháp:

So sánh với số ) .

– Bình phương hai vế.

– Đưa vào ngoài dấu căn.

– Dựa vào tính chất: nếu a>b geq

0 thì

Bài 1:sqrt{22}sqrt{27}

; 11 và sqrt{121} ; 7 và sqrt{50}; 6 và sqrt{33};

Bài 2:

a) 2 và sqrt{147}

b) -3 sqrt{5} và -5 sqrt{3}

c) 21,2 sqrt{7}, 15 sqrt{3},-sqrt{123}

d) 2 sqrt{15}

sqrt{59}

e) 2 sqrt{2}-1

và 2

f) 6 và sqrt{41}

g) frac{sqrt{3}}{2}

và 1

h) -frac{sqrt{10}}{2}

-2 sqrt{5}

i) sqrt{6}-1

3 mathrm{j}) 2 sqrt{5}-5 sqrt{2} và 1

k)frac{sqrt{8}}{3} và frac{3}{4}

Dạng 4: Rút gọn biểu thức

Phương pháp: Các em dùng hằng đẳng thức 1 và 2 trong gamma

hằng đẳng thức, biến đổi biểu thức trong căn đưa về dạng sqrt{A^{2}} rồi áp dụng công thức:

sqrt{A^{2}}=|A|=left{begin{array}{ll} A & text { nếu } A geq 0  -A & text { nếu } A<0 end{array}right.


Chú ý: Xét các trường hợp A geq 0, A

Bài 1. Rút gọn các biểu thức sau:

a) x+3+sqrt{x^{2}-6 x+9} quad(x leq 3)

b) sqrt{x^{2}+4 x+4}-sqrt{x^{2}} quad(-2 leq x leq 0)

d) |x-2|+frac{sqrt{x^{2}-4 x+4}}{x-2}(x<2)

Bài 2. * Rút gọn các biểu thức sau:

a) left.left.mathrm{A}=sqrt{1-4 a+4 a^{2}}-2 a mathrm{~b}right) mathrm{B}=x-2 y- sqrt{x^{2}-4 x y+4 y^{2}} mathrm{c}right) mathrm{C}=x^{2}+sqrt{x^{4}-8 x^{2}+16}

READ  Lời bài hát Em đừng khóc

d) mathrm{D}=2 x-1-frac{sqrt{x^{2}-10 x+25}}{x-5}

e) E=frac{sqrt{x^{4}-4 x^{2}+4}}{x^{2}-2} f ) F=sqrt{(x-4)^{2}}+frac{x-4}{sqrt{x^{2}-8 x+16}}

Bài 3. Cho biểu thức A=sqrt{x^{2}+2 sqrt{x^{2}-1}}-sqrt{x^{2}-2 sqrt{x^{2}-1}}.

a) Với giá trị nào của x thì A có nghĩa?

b) Tính A nếu x geq sqrt{2}

 Bài 4. Cho 3 số dương x, y, z thoả điều kiện: x y+y z+z x=1. Tính:

A=x sqrt{frac{left(1+y^{2}right)left(1+z^{2}right)}{1+x^{2}}}+y sqrt{frac{left(1+z^{2}right)left(1+x^{2}right)}{1+y^{2}}}+z sqrt{frac{left(1+x^{2}right)left(1+y^{2}right)}{1+z^{2}}}

……………..

Tài liệu vẫn còn, mời các bạn tải file để xem thêm nội dung chi tiết

Các dạng Toán Đại số lớp 9 là tài liệu hữu ích, gồm 49 trang tuyển chọn kiến thức lý thuyết và các dạng bài tập Đại số 9.

Các dạng toán đại số 9 bao gồm lý thuyết và các dạng bài tập về: Căn bậc hai – căn bậc ba, liên hệ giữa phép khai phương và phép nhân, phép chia, biến đổi đơn giản biểu thức chứa căn thức bậc hai, rút gọn biểu thức chứa căn thức bậc hai. Sau đây là nội dung chi tiết, mời các bạn cùng tham khảo và tải tài liệu tại đây.

Tổng hợp các dạng bài tập Đại số lớp 9

Chương I. Căn bậc hai – Căn bậc ba

1. Căn bậc hai số học

– Căn bậc hai của một số không âm a là số x sao cho x= a

– Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là sqrt{a}

. Số âm ký hiệu là -sqrt{a}

– Số 0 có đúng một căn bậc hai là chính số 0, ta viết sqrt{0} = 0

– Với số dương a, số sqrt{a}

là căn bậc hai số học của a. Số 0 cũng là căn bậc hai số học của 0

Với hai số không âm a, b, ta có: a, b, ta có: a < b suy ra sqrt{a}

bé hơn sqrt{b}

2. Căn thức bậc hai

Với A là một biểu thức đại số, ta gọi sqrt{a}

là căn thức bậc hai của A.

sqrt{a}

xác định (hay có nghĩa) khi A lấy giá trị không âm

cdot sqrt{A^{2}}=|A|=left{begin{array}{ll}A & n hat{e}^{prime} u A geq 0  -A & n hat{e}^{prime} u A<0end{array}right.

Dạng 1: Tìm điều kiện để sqrt{A} có nghĩa

cdot sqrt{A}

có nghĩa Leftrightarrow A geq 0

cdot sqrt{frac{1}{A}}

có nghĩa

frac{f(x)}{g(x)}

có nghĩa khi g(x) neq 0 cdot sqrt{frac{f(x)}{g(x)}} có nghĩa khi frac{f(x)}{g(x)} geq 0g(x) neq 0

Chú ý: Nếu bài yêu cầu tìm TXĐ thì sau khi tìm được điều kiện x, các em biểu diễn dưới dạng tập hợp

READ  Soạn bài Chí Phèo (Phần 1: Tác giả)

|f(x)| geq a

thì  f(x) geq a hoặc f(x) leq-a

Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a. sqrt{-3 x}

b.sqrt{4-2 x}

c) sqrt{-3 x+2}$ d) $sqrt{3 x+1}

d)sqrt{3 x+1}

e) sqrt{9 x-2}

f) sqrt{6 x-1}

Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:

a) frac{x}{x+2}+sqrt{x-2}

b) frac{x}{x^{2}-4}+sqrt{x-2}

c) sqrt{frac{1}{3-2 x}}

d) sqrt{frac{4}{2 x+3}}

Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:

a) sqrt{x^{2}+1}

b) sqrt{4 x^{2}+3}

c) sqrt{9 x^{2}-6 x+1}

d) sqrt{-x^{2}+2 x-1}

e) sqrt{-|x+5|}

f) sqrt{-2 x^{2}-1}

Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a) sqrt{4-x^{2}}

b)sqrt{x^{2}-16}

c) sqrt{x^{2}-3}

d) sqrt{x^{2}-2 x-3}

e) sqrt{x(x+2)}

f)sqrt{x^{2}-5 x+6}

Bài 5: Với giá trị nào của x thì mỗi căn thức sau có nghĩa

a) sqrt{|x|-1}

b)sqrt{|x-1|-3}

c) sqrt{4-|x|}

d) sqrt{x-2 sqrt{x-1}}

e) frac{1}{sqrt{9-12 x+4 x^{2}}}

f)frac{1}{sqrt{x+2 sqrt{x-1}}}

Dạng 2: Tính giá trị biểu thức

Phương pháp: Các em dùng hằng đẳng thức 1 và 2 trong 7 hằngđẳng thức, biến đổi biểu thức
trong căn đưa về dạng sqrt{A^{2}}

rồi áp dụng công thức:

sqrt{A^{2}}=|A|=left{begin{array}{ll}A & text { nếu } A geq 0  -A & text { nếu } A<0end{array}right.

Bài 1. Thực hiện các phép tính sau:

a) -0,8 sqrt{(-0,125)^{2}}

b) sqrt{(-2)^{6}}

c) sqrt{(sqrt{3}-2)^{2}}

d) sqrt{(2 sqrt{2}-3)^{2}}

e) sqrt{left(frac{1}{sqrt{2}}-frac{1}{2}right)^{2}}

f) sqrt{(0,1-sqrt{0,1})^{2}}

Bài 2: Thực hiện các phép tính sau:

a) sqrt{(3-2 sqrt{2})^{2}}+sqrt{(3+2 sqrt{2})^{2}}

b) sqrt{(5-2 sqrt{6})^{2}}-sqrt{(5+2 sqrt{6})^{2}}

Bài 3. Thực hiện các phép tính sau:

a) sqrt{5+2 sqrt{6}}-sqrt{5-2 sqrt{6}}

b) sqrt{7-2 sqrt{10}}-sqrt{7+2 sqrt{10}}

= c) sqrt{4-2 sqrt{3}}+sqrt{4+2 sqrt{3}}

d) sqrt{24+8 sqrt{5}}+sqrt{9-4 sqrt{5}}

e) sqrt{17-12 sqrt{2}}+sqrt{9+4 sqrt{2}}

f) sqrt{6-4 sqrt{2}}+sqrt{22-12 sqrt{2}}

Bài 4. Thực hiện các phép tính sau:

a) sqrt{sqrt{5}-sqrt{3-sqrt{29-12 sqrt{5}}}}

b) sqrt{13+30 sqrt{2+sqrt{9+4 sqrt{2}}}}

c) (sqrt{3}-sqrt{2}) sqrt{5+2 sqrt{6}}

d) sqrt{5-sqrt{13+4 sqrt{3}}}+sqrt{3+sqrt{13+4 sqrt{3}}}

e) sqrt{1+sqrt{3+sqrt{13+4 sqrt{3}}}}+sqrt{1-sqrt{3-sqrt{13-4 sqrt{3}}}}

Dạng 3: So sánh căn bậc 2

Phương pháp:

So sánh với số ) .

– Bình phương hai vế.

– Đưa vào ngoài dấu căn.

– Dựa vào tính chất: nếu a>b geq

0 thì

Bài 1:sqrt{22}sqrt{27}

; 11 và sqrt{121} ; 7 và sqrt{50}; 6 và sqrt{33};

Bài 2:

a) 2 và sqrt{147}

b) -3 sqrt{5} và -5 sqrt{3}

c) 21,2 sqrt{7}, 15 sqrt{3},-sqrt{123}

d) 2 sqrt{15}

sqrt{59}

e) 2 sqrt{2}-1

và 2

f) 6 và sqrt{41}

g) frac{sqrt{3}}{2}

và 1

h) -frac{sqrt{10}}{2}

-2 sqrt{5}

i) sqrt{6}-1

3 mathrm{j}) 2 sqrt{5}-5 sqrt{2} và 1

k)frac{sqrt{8}}{3} và frac{3}{4}

Dạng 4: Rút gọn biểu thức

Phương pháp: Các em dùng hằng đẳng thức 1 và 2 trong gamma

hằng đẳng thức, biến đổi biểu thức trong căn đưa về dạng sqrt{A^{2}} rồi áp dụng công thức:

sqrt{A^{2}}=|A|=left{begin{array}{ll} A & text { nếu } A geq 0  -A & text { nếu } A<0 end{array}right.


Chú ý: Xét các trường hợp A geq 0, A

Bài 1. Rút gọn các biểu thức sau:

a) x+3+sqrt{x^{2}-6 x+9} quad(x leq 3)

b) sqrt{x^{2}+4 x+4}-sqrt{x^{2}} quad(-2 leq x leq 0)

d) |x-2|+frac{sqrt{x^{2}-4 x+4}}{x-2}(x<2)

Bài 2. * Rút gọn các biểu thức sau:

a) left.left.mathrm{A}=sqrt{1-4 a+4 a^{2}}-2 a mathrm{~b}right) mathrm{B}=x-2 y- sqrt{x^{2}-4 x y+4 y^{2}} mathrm{c}right) mathrm{C}=x^{2}+sqrt{x^{4}-8 x^{2}+16}

d) mathrm{D}=2 x-1-frac{sqrt{x^{2}-10 x+25}}{x-5}

e) E=frac{sqrt{x^{4}-4 x^{2}+4}}{x^{2}-2} f ) F=sqrt{(x-4)^{2}}+frac{x-4}{sqrt{x^{2}-8 x+16}}

Bài 3. Cho biểu thức A=sqrt{x^{2}+2 sqrt{x^{2}-1}}-sqrt{x^{2}-2 sqrt{x^{2}-1}}.

a) Với giá trị nào của x thì A có nghĩa?

b) Tính A nếu x geq sqrt{2}

 Bài 4. Cho 3 số dương x, y, z thoả điều kiện: x y+y z+z x=1. Tính:

A=x sqrt{frac{left(1+y^{2}right)left(1+z^{2}right)}{1+x^{2}}}+y sqrt{frac{left(1+z^{2}right)left(1+x^{2}right)}{1+y^{2}}}+z sqrt{frac{left(1+x^{2}right)left(1+y^{2}right)}{1+z^{2}}}

……………..

Tài liệu vẫn còn, mời các bạn tải file để xem thêm nội dung chi tiết

See more articles in the category: TIN TỨC

Leave a Reply