Giải Toán 9 Bài 9: Căn bậc ba

You are viewing the article: Giải Toán 9 Bài 9: Căn bậc ba at Vuidulich.vn

Or you want a quick look: Lý thuyết Căn bậc ba

Giải bài tập SGK Toán 9 Tập 1 trang 36 để xem gợi ý giải các bài tập của Bài 9 Căn bậc ba thuộc chương 1 Đại số 9.

Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa Toán lớp 9 tập 1. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 9 Chương 1 trong sách giáo khoa Toán 9 Tập 1. Chúc các bạn học tốt.

Lý thuyết Căn bậc ba

1. Định nghĩa 

+ Căn bậc ba của một số a là số x sao cho x^3=a

+ Căn bậc ba của số a được kí hiệu là root 3 of a

Như vậy {left( {root 3 of a } right)^3} = a

Mọi số thực đều có căn bậc ba.

2. Các dạng toán cơ bản

Dạng 1: Tính giá trị biểu thức 

Sử dụng:{left( {sqrt[3]{a}} right)^3} = sqrt[3]{{{a^3}}} = a

Dạng 2: So sánh các căn bậc ba

Sử dụng: a < b Leftrightarrow sqrt[3]{a} < sqrt[3]{b}

Dạng 3: Giải phương trình chứa căn bậc ba

Sử dụng: sqrt[3]{A} = B Leftrightarrow A = {B^3}

Ví dụ:

begin{array}{l} sqrt[3]{{x - 1}} = 2 Leftrightarrow x - 1 = {2^3} Leftrightarrow x - 1 = 8 Leftrightarrow x = 9 end{array}

Giải bài tập toán 9 trang 36 tập 1

Bài 67 (trang 36 SGK Toán 9 Tập 1)

Hãy tìm

READ  Hình nền biểu tượng Windows, hình nền logo Windows

∛512 ;

∛-729 ;

∛0,064 ;

∛-0,216 ;

∛-0,008

Gợi ý đáp án

∛512 = ∛83 = 8

∛-729 = ∛(-9)3 = -9

∛0,064 = ∛(0,4)3 = 0,4

∛-0,216 = ∛(-0,6)3 = -0,6

∛-0,008 = ∛(-0,2)3 = -0,2

Chú ý: Bạn có thể tìm các căn bậc ba ở trên bằng máy tính bỏ túi.

(Ghi nhớ: Các bạn nên ghi nhớ một số lũy thừa bậc 3 của các số < 10:

23 = 8; 33 = 27; 43 = 64; 53 = 125;

63 = 216; 73 = 343; 83 = 512; 93 = 729)

Bài 68 (trang 36 SGK Toán 9 Tập 1)

Tính

a. root 3 of {27} - root 3 of { - 8} - root 3 of {125}

b. dfrac{root 3 of {135} }{root 3 of 5 } - root 3 of {54} .root 3 of 4

Gợi ý đáp án

a. root 3 of {27} - root 3 of { - 8} - root 3 of {125}

sqrt[3]{27}-sqrt[3]{-8}-sqrt[3]{125}=sqrt[3]{3^3}-sqrt[3]{(-2)^3}-sqrt[3]{5^3}

=3-(-2)-5

=3+2-5=0.

b. dfrac{root 3 of {135} }{root 3 of 5 } - root 3 of {54} .root 3 of 4

dfrac{sqrt[3]{135}}{sqrt[3]{5}}-sqrt[3]{54}.sqrt[3]{4}=dfrac{sqrt[3]{27.5}}{sqrt[3]{5}}-sqrt[3]{54.4}

=dfrac{sqrt[3]{5}.sqrt[3]{27}}{sqrt[3]{5}}-sqrt[3]{216}

=sqrt[3]{27}-sqrt[3]{216}

=sqrt[3]{3^3}-sqrt[3]{6^3} =3-6=-3.

Bài 69 (trang 36 SGK Toán 9 Tập 1)

So sánh

a) 5 và root 3 of {123} ;

b) 5root 3 of 6 và 6root 3 of 5 .

Gợi ý đáp án

a) Ta có: 5=root 3 of {5^3}=root 3 of {125}

Vậy

b) Ta có:

begin{array}{l} + ),5sqrt[3]{6} = sqrt[3]{{{5^3}.6}} = sqrt[3]{{125.6}} = sqrt[3]{{750}} + ),6sqrt[3]{5} = sqrt[3]{{{6^3}.5}} = sqrt[3]{{216.5}} = sqrt[3]{{1080}} end{array}

750 < 1080 Leftrightarrow root 3 of {750} < root 3 of {1080}

Leftrightarrow 5root 3 of 6 < 6root 3 of 5.

Vậy 5root 3 of 6 < 6root 3 of 5.

Giải bài tập SGK Toán 9 Tập 1 trang 36 để xem gợi ý giải các bài tập của Bài 9 Căn bậc ba thuộc chương 1 Đại số 9.

Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa Toán lớp 9 tập 1. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 9 Chương 1 trong sách giáo khoa Toán 9 Tập 1. Chúc các bạn học tốt.

Lý thuyết Căn bậc ba

1. Định nghĩa 

+ Căn bậc ba của một số a là số x sao cho x^3=a

+ Căn bậc ba của số a được kí hiệu là root 3 of a

Như vậy {left( {root 3 of a } right)^3} = a

Mọi số thực đều có căn bậc ba.

2. Các dạng toán cơ bản

Dạng 1: Tính giá trị biểu thức 

Sử dụng:{left( {sqrt[3]{a}} right)^3} = sqrt[3]{{{a^3}}} = a

Dạng 2: So sánh các căn bậc ba

Sử dụng: a < b Leftrightarrow sqrt[3]{a} < sqrt[3]{b}

READ  TOP game PC hay có thể chơi tiếp trên mobile

Dạng 3: Giải phương trình chứa căn bậc ba

Sử dụng: sqrt[3]{A} = B Leftrightarrow A = {B^3}

Ví dụ:

begin{array}{l} sqrt[3]{{x - 1}} = 2 Leftrightarrow x - 1 = {2^3} Leftrightarrow x - 1 = 8 Leftrightarrow x = 9 end{array}

Giải bài tập toán 9 trang 36 tập 1

Bài 67 (trang 36 SGK Toán 9 Tập 1)

Hãy tìm

∛512 ;

∛-729 ;

∛0,064 ;

∛-0,216 ;

∛-0,008

Gợi ý đáp án

∛512 = ∛83 = 8

∛-729 = ∛(-9)3 = -9

∛0,064 = ∛(0,4)3 = 0,4

∛-0,216 = ∛(-0,6)3 = -0,6

∛-0,008 = ∛(-0,2)3 = -0,2

Chú ý: Bạn có thể tìm các căn bậc ba ở trên bằng máy tính bỏ túi.

(Ghi nhớ: Các bạn nên ghi nhớ một số lũy thừa bậc 3 của các số < 10:

23 = 8; 33 = 27; 43 = 64; 53 = 125;

63 = 216; 73 = 343; 83 = 512; 93 = 729)

Bài 68 (trang 36 SGK Toán 9 Tập 1)

Tính

a. root 3 of {27} - root 3 of { - 8} - root 3 of {125}

b. dfrac{root 3 of {135} }{root 3 of 5 } - root 3 of {54} .root 3 of 4

Gợi ý đáp án

a. root 3 of {27} - root 3 of { - 8} - root 3 of {125}

sqrt[3]{27}-sqrt[3]{-8}-sqrt[3]{125}=sqrt[3]{3^3}-sqrt[3]{(-2)^3}-sqrt[3]{5^3}

=3-(-2)-5

=3+2-5=0.

b. dfrac{root 3 of {135} }{root 3 of 5 } - root 3 of {54} .root 3 of 4

dfrac{sqrt[3]{135}}{sqrt[3]{5}}-sqrt[3]{54}.sqrt[3]{4}=dfrac{sqrt[3]{27.5}}{sqrt[3]{5}}-sqrt[3]{54.4}

=dfrac{sqrt[3]{5}.sqrt[3]{27}}{sqrt[3]{5}}-sqrt[3]{216}

=sqrt[3]{27}-sqrt[3]{216}

=sqrt[3]{3^3}-sqrt[3]{6^3} =3-6=-3.

Bài 69 (trang 36 SGK Toán 9 Tập 1)

So sánh

a) 5 và root 3 of {123} ;

b) 5root 3 of 6 và 6root 3 of 5 .

Gợi ý đáp án

a) Ta có: 5=root 3 of {5^3}=root 3 of {125}

Vậy

b) Ta có:

begin{array}{l} + ),5sqrt[3]{6} = sqrt[3]{{{5^3}.6}} = sqrt[3]{{125.6}} = sqrt[3]{{750}} + ),6sqrt[3]{5} = sqrt[3]{{{6^3}.5}} = sqrt[3]{{216.5}} = sqrt[3]{{1080}} end{array}

750 < 1080 Leftrightarrow root 3 of {750} < root 3 of {1080}

Leftrightarrow 5root 3 of 6 < 6root 3 of 5.

Vậy 5root 3 of 6 < 6root 3 of 5.

See more articles in the category: TIN TỨC

Leave a Reply