Or you want a quick look: Đầy đủ các dạng toán về cách sử dụng các công thức hoán vị, chỉnh hợp, tổ hợp có hướng dẫn giải chi tiết. Nguồn: Đặng Việt Đông
Đầy đủ các dạng toán về cách sử dụng các công thức hoán vị, chỉnh hợp, tổ hợp có hướng dẫn giải chi tiết. Nguồn: Đặng Việt Đông
HOÁN VỊ, CHỈNH HỢP, TỔ HỢP
A. LÝ THUYẾT TÓM TẮT
I. Hoán vị
1. Giai thừa
(n! = 1.2.3…n). Quy ước: (0! = 1)
(n! = left( {n – 1} right)!n)
(frac{{n!}}{{p!}} = left( {p + 1} right)left( {p + 2} right)….n) (với (n > p))
(frac{{n!}}{{left( {n – p} right)!}} = left( {n – p + 1} right)left( {n – p + 2} right)….n) (với (n > p))
2. Hoán vị (không lặp)
Một tập hợp gồm n phần tử (left( {n ge 1} right)). Mỗi cách sắp xếp n phần tử này theo một thứ tự nào đó được gọi là một hoán vị của n phần tử.
Số hoán vị của n phần tử là ({P_n} = n!)
3. Hoán vị lặp
Cho k phần tử khác nhau ({a_1};{a_2};…;{a_k}) . Mỗi cách sắp xếp n phần tử trong đó gồm n1 phần tử a1; n2 phần tử a2;…; nk phần tử ak (left( {{n_1} + {n_2} + … + {n_k} = n} right)) theo một thứ tự nào đó được gọi là một hoán vị lặp cấp n và kiểu (left( {{n_1};{n_2};…;{n_k}} right)) của k phần tử
Số các hoán vị lặp cấp n kiểu (left( {{n_1};{n_2};;;;{n_k}} right)) của k phần tử là:
({P_n}left( {{n_1};{n_2};…;{n_k}} right) = frac{{n!}}{{{n_1}!{n_2}!…{n_k}!}})
HƯỚNG DẪN GIẢI
Luyện Bài tập trắc nghiệm môn Toán lớp 11 – Xem ngay