Công thức giải bất phương trình và bài tập có lời giải từ A

Or you want a quick look:

Trong bài viết dưới đây, điện máy Sharp Việt Nam tổng hợp các công thức giải bất phương trình và các dạng bài tập về bất phương trình có lời giải chi tiết giúp các bạn ôn lại kiến thức để làm bài tập nhanh chóng nhé Nội dung bài viết A. Bất phương trình quy về bậc nhất Trong phần A, điện máy Sharp Việt Nam sẽ giới thiệu các công thức giải bất phương trình lớp 10 dành cho các phương trình bậc nhất. Trước khi đi vào các công thức giải các em cần phải nắm vững bảng xét dấu của nhị thức bậc nhất. Lưu ý: Phải cùng trái khác Giải và biện luận bất phương trình dạng ax + b < 0 Điều kiện Kết quả tập nghiệm a > 0 S = ( – ∞, -b/a) a < 0 S = ( -b/a, + ∞) a = 0 b ≥ 0  S = ∅ b < 0 S= R Hệ bất phương trình bậc nhất một ẩn Muốn giải hệ bất phương trình bậc nhất một ẩn ta giải từng bất phương trình của hệ rồi lấy giao các tập nghiệm thu được. Dấu nhị thức bậc nhất f(x) = ax + b (a ≠ 0) x ∈ ( – ∞, -b/a) a.f(x) < 0 x ∈ ( -b/a, + ∞) a.f(x) > 0 Bất phương trình tích  Dạng: P(x).Q(x) > 0 (1) (trong đó P(x), Q(x) là những nhị thức bậc nhất.) ∙ Cách giải: Lập bxd của P(x).Q(x). Từ đó suy ra tập nghiệm của (1). Bất phương trình chứa ẩn ở mẫu Chú ý: Không nên qui đồng và khử mẫu. Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối Tương tự như giải pt chứa ẩn trong dấu giá trị tuyệt đối, ta hay sử dụng định nghĩa và tính chất của giá trị tuyệt đối để khử dấu giá trị tuyệt đối.

READ  Nằm mơ thấy con mèo đánh con gì ? Có điềm báo gì ? Tốt hay xấu ?
Tham khảo thêm:  B. Bất phương trình quy về bậc hai Trong phần B, diện máy Sharp Việt Nam sẽ tiếp tục giới thiệu các công thức giải bất phương trình lớp 10 dành cho các phương trình bậc hai và phương trình qui về bậc hai. Trước khi đi vào các công thức giải các em cần phải nắm vững bảng xét dấu của nhị thức bậc nhất. Dấu của tam thức bậc hai f(x) = ax2 + bx + c ( a ≠ 0) Δ > 0 a.f(x) > 0, ∀x ∈ R Δ = 0 a.f(x) > 0, ∀x ∈ R {-b/2a} Δ < 0 a.f(x) > 0, ∀x ∈ ( -∞, x1) ∪ (x2, +∞) a.f(x) < 0, ∀x ∈ ( x1, x2) Bất phương trình bậc hai một ẩn ax2 + bx + c > 0 (hoặc ≥ 0; < 0; ≤ 0) Để giải bất phương trình bậc hai ta áp dụng định lí về dấu của tam thức bậc hai. Phương trình – Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối Để giải phương trình, bất phương trình chứa ẩn trong dấu giá trị tuyệt đối, ta thường sử dụng định nghĩa hoặc tính chất của giá trị tuyệt đối để khử dấu giá trị tuyệt đối. Phương trình – Bất phương trình chứa ẩn trong dấu căn Trong các dạng toán thì bất phương trình chứa căn được xem là dạng toán khó nhất. Để giải phương trình, bất phương trình chứa ẩn trong dấu căn ta cầ sử dụng kết hợp các công thức giải bất phương trình lớp 10 kết hợp với phép nâng luỹ thừa hoặc đặt ẩn phụ để khử dấu căn. Bài tập về giải bất phương trình lớp 10 có lời giải Ví dụ 1:Cho bất phương trình 2x ≤ 3. a) Trong các số -2; 2½; π; √10 số nào là nghiệm, số nào không là nghiệm của bất phương trình trên ? b) Giải bất phương trình đó và biểu diễn tập nghiệm của nó trên trục số. Lời giải a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình  không là nghiệm của bất phương trình ,  2π > 3 nên π không là nghiệm của bất phương trình. 2√10 > 3 ( vì 40 > 9) nên √10 không là nghiệm của bất phương trình, Các số là nghiệm của bất phương trình trên là: -2; Các số không là nghiệm của bất phương trình trên là: 2½; π; √10 b) 2x ≤ 3 ⇔ x ≤ 3/2 Biểu diễn tập nghiệm trên trục số là:
READ  Ước số là gì? Bội số là gì? Cách tìm ước số và bội số chính xác 100%
Ví dụ 2: Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau: Lời giải Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R{0; –1} Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R{–2; 1; 2; 3} Ví dụ 3: Chứng minh các bất phương trình sau vô nghiệm: b) Tập xác định: D = R. c) Tập xác định D = R. Ta có: Ví dụ 4: Giải thích vì sao các cặp bất phương trình sau tương đương? a) -4x + 1 > 0 và 4x – 1 < 0 b) 2x2 + 5 ≤ 2x – 1 và 2x2 – 2x + 6 ≤ 0 Lời giải a) Nhân hai vế của BPT: –4x + 1 > 0 với (–1) < 0 ta được BPT: 4x – 1 < 0 nên hai BPT đó tương đương. Viết là –4x + 1 > 0 ⇔ 4x – 1 < 0. b) Ta có: 2x2 + 5 ≤ 2x – 1 ⇔ 2x2 + 5 + 1 – 2x ≤ 2x – 1 + 1 – 2x (Cộng cả hai vế của BPT với 1 – 2x). ⇔ 2x2 – 2x + 6 ≤ 0. Vậy hai BPT đã cho tương đương: 2x2 + 5 ≤ 2x – 1 ⇔ 2x2 – 2x + 6 ≤ 0. Ví dụ 5: Giải các bất phương trình sau: b. (2x – 1)(x + 3) – 3x + 1 ≤ (x – 1)(x + 3) + x2 – 5 Lời giải a) Tập xác định D = R. b) (2x – 1)(x + 3) – 3x + 1 ≤ (x – 1)(x + 3) + x2 – 5 ⇔ 2x2 + 6x – x – 3 – 3x + 1 ≤ x2 + 3x – x – 3 + x2 – 5 ⇔ 2x2 + 2x – 2 ≤ 2x2 + 2x – 8 ⇔ 6 ≤ 0 (Vô lý). Vậy BPT vô nghiệm. Ví dụ 6: Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau: a) -x + 2 + 2(y – 2) < 2(1 – x) b) 3(x – 1) + 4(y – 2) < 5x – 3 Lời giải a) –x + 2 + 2(y – 2) < 2(1 – x) ⇔ –x + 2 + 2y – 4 < 2 – 2x ⇔ x + 2y < 4 (1) Biểu diễn tập nghiệm trên mặt phẳng tọa độ : – Vẽ đường thẳng x + 2y = 4. – Thay tọa độ (0; 0) vào (1) ta được 0 + 0 < 4 ⇒ (0; 0) là một nghiệm của bất phương trình. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x + 2y = 4 (miền không bị gạch).
READ  Câu trần thuật đơn là gì ? Lấy ví dụ ? Phân loại, đặc điểm, chức năng ? Ngữ Văn 6
b) 3(x – 1) + 4(y – 2) < 5x – 3 ⇔ 3x – 3 + 4y – 8 < 5x – 3 ⇔ -2x + 4y < 8 ⇔ x – 2y > –4 ( chia cả hai vế cho -2 < 0) (2) Biểu diễn tập nghiệm trên mặt phẳng tọa độ: – Vẽ đường thẳng x – 2y = –4. – Thay tọa độ (0; 0) vào (2) ta được: 0 + 0 > –4 đúng ⇒ (0; 0) là một nghiệm của bất phương trình. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x – 2y = –4 Bên trên chính là toàn bộ các công thức giải bất phương trình lớp 10 có thể giúp các bạn học sinh hệ thống lại kiến thức để áp dụng vào làm bài tập nhé
See more articles in the category: Giáo dục

Leave a Reply